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L D A + D m  is a novel computational technique for ab initio investigations of real materials 
with strongly correlated electrons, such as transition metals and their oxides. It combines the 
strength of conventiod band structure theory in the local density approximation (LDA) with a 
modem many-body approach, the dynamical mean-field thtory ( D q .  In the last few years 
LDA+DMFT has proved to be a powaful tool for the realistic modeling of sfxongly correlated 
electronic systems. In this papa the basic idcas and the set-up of the L.DA+DMFT(X) approach, 
where X is the method used to solve the DMFT equations, are discussed. Results obtained with 
X=QMC (quantum Monte Carlo) and X=NCA (non-crossing approximation) are presented and 
compared. By means of the model system Lal-,Sr,TiO3 we show that the method X mattas 

metal-insulator transition in the transition metal oxide V2O3 and the a7 transition in the 4f- 
electron system Ce. 
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1 Introduction 

The calculation of physical properties of electronic systems by controlled approximations 
is one of the most important challenges of modern theoretical solid state physics. In partic- 
ular, the physics of transition metal oxides - a singularly important group of materials both 
from the point of view of fundamental research and technological applications - may only 
be understood by explicit consideration of the strong effective interaction between the con- 
duction electrons in these systems. The investigation of electronic many-particle systems 
is made especially complicated by quantum statistics, and by the fact that the investigation 
of many phenomena require the application of non-perturbative theoretical techniques. 

From a microscopic point of view theoretical solid state physics is concerned with the 
investigation of interacting many-particle systems involving electrons and ions. However, 
it is an established fact that many electronic properties of matter are well described by the 
purely electronic Hamiltonian 

where the crystal lattice enters only through an ionic potential. The applicability of this 
approach may be justified by the validity of the Born and Oppenheimer approximation.' 
Here, ++(r, a) and +(r, c) are field operators that create and annihilate an electron at 
position r with spin a, A is the Laplace operator, me the electron mass, e the electron 
charge, and 

denote the one-particle potential due to all ions i with charge eZi at given positions Ri, 
and the electron-electron interaction, respectively. 

While the ab initio Hamiltonian (1) is easy to write down it is impossible to solve 
exactly if more than a few electrons are involved. Numerical methods like Green's Func- 
tion Monte Carlo and related approaches have been used successfully for relatively modest 
numbers of electrons. Even so, however, the focus of the work has been on jellium and 
on light atoms and molecules like H, H2, 3He, 4He, see, e.g., the articles by Anderson, 
Bernu, Ceperley et al. in the present Proceedings of the NZC Winterschool 2002. Be- 
cause of this, one generally either needs to make substantial approximations to deal with 
the Hamiltonian (l), or replace it by a greatly simplified model Hamiltonian. At present 
these two different strategies for the investigation of the electronic properties of solids 
are applied by two largely separate groups: the density functional theory @FT) and the 
many-body community. It is known for a long time already that DFT, together with its 
local density approximation (LDA), is a highly successful technique for the calculation 
of the electronic structure of many real materials? However, for strongly correlated ma- 
terials, Le., d- and f-electron systems which have a Coulomb interaction comparable to 
the band-width, DFTLDA is seriously restricted in its accuracy and reliability. Here, the 
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model Hamiltonian approach is more general and powerful since there exist systematic 
theoretical techniques to investigate the many-electron problem with increasing accuracy. 
These many-body techniques allow one to describe qualitative tendencies and understand 
the basic mechanism of various physical phenomena. At the same time the model Hamil- 
tonian approach is seriously restricted in its ability to make quantitative predictions since 
the input parameters are not accurately known and hence need to be adjusted. One of the 
most successful techniques in this respect is the dynamical mean-field theory (DMFT) - 
a non-perturbative approach to strongly correlated electron systems which was developed 
during the past decade.+" The LDA+DMFT approach, which was first formulated by 
Anisimov et aZ.,'Z l3 combines the strength of DFTLDA to describe the weakly correlated 
part of the ab initio Hamiltonian (l), i.e., electrons in s- and porbitals as well as the long- 
range interaction of the d- and f-electrons, with the power of DMFT to describe the strong 
correlations induced by the local Coulomb interaction of the d- or f-electrons. 

Starting from the ab initio Hamiltonian (l), the LDA+DMFT approach is presented in 
Section 2, including the DFT in Section 2.1, the LDA in Section 2.2, the construction of a 
model Hamiltonian in Section 2.3, and the DMFT in Section 2.4. As methods used to solve 
the DMFT we discuss the quantum Monte Carlo (QMC) algorithm in Section 2.5 and the 
non-crossing approximation WCA) in Section 2.6. A simplified treatment for transition 
metal oxides is introduced in Section 2.7, and the scheme of a self-consistent LDA+DMFT 
in Section 2.8. As a particular example, the LDA+DMFT calculation for Lal-,Sr,Ti03 
is discussed in Section 3, emphasizing that the method X to solve the DMFT matters on 
a quantitative level. Our calculations for the Mott-Hubbard metal-insulator transition in 
V2O3 are presented in Section 4, in comparison to the experiment. Section 5 reviews our 
recent calculations of the Ce cr-7 transition, in the perspective of the models referred to 
as Kondo volume collapse and Mott transition scenario. A discussion of the LDA+DMFT 
approach and its future prospects in Section 6 closes the presentation. 

2 The LDA+DMFT approach 

2.1 Density functional theory 

The fundamental theorem of DFT by Hohenberg and KohnI4 (see, e.g., the review by 
Jones and Gunnarsson2) states that the ground state energy is a functional of the elec- 
tron density which assumes its minimum at the ground state electron density. Following 
Levy," this theorem is easily proved and the functional even constructed by taking the 
minimum (infimum) of the energy expectation value w.r.t. all (many-body) wave functions 
Cp(rla1 ... rNfYN) at a given electron number N which yield the electron density p(r): 

However, this construction is of no practical value since it actually requires the eval- 
uation of the Hamiltonian (1). Only certain contributions like the Hartree energy 

= $ J d3r' d3r T&(r - r') p(r')p(r) and the energy of the ionic potential 
E ionb]  = J d3r Ron(r )  p(r) can be expressed directly in terms of the electron density. 
This leads to 
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where Ekin[p] denotes the kinetic energy, and Exc[p] is the unknown exchange and cor- 
relation term which contains the energy of the electron-electron interaction except for the 
Hartree term. Hence all the difficulties of the many-body problem have been transferred 
into Exc[p]. While the kinetic energy &in cannot be expressed explicitly in terms of the 
electron density one can employ a trick to determine it. Instead of minimizing E[p] with 
respect to p one minimizes it w.r.t. a set of one-particle wave functions (pi related to p via 

N 

i=l 

To guarantee the normalization of (pi, the Lagrange parameters ~i are introduced such 
that the variation a{E[p]  + ~i[l - J d3~lp i (r )12]} /b(p i (r )  = 0 yields the Kohn-ShamI6 
equations: 

These equations have the same form as a one-particle Schrodinger equation which, a pos- 
teriori, justifies to calculate the kinetic energy by means of the one-particle wave-function 
ansatz. The kinetic energy of a one-particle ansatz which has the ground state density is, 
then, given by Ekin[pmin] = - CLV=,((piIh2A/(2rn,)I(pi) if the (pi are the self-consistent 
(spin-degenerate) solutions of Eqs. (6) and (5)  with lowest “energy” E+ Note, however, 
that the one-particle potential of Eq. (6), i.e., 

is only an auxiliary potential which artificially arises in the approach to minimize E[p]. 
Thus, the wave functions (pi and the Lagrange parameters ~i have no physical meaning at 
this point. Altogether, these equations allow for the DFTLDA calculation, see the flow 
diagram Fig. 1. 

2.2 Local density approximation 

So far no approximations have been employed since the difficulty of the many-body prob- 
lem was only transferred to the unknown functional Exc[p]. For this term the local density 
approximation (LDA) which approximates the functional Exc[p] by a function that depends 
on the local density only, i.e., 

Ex&] -+ J d37- e : * ( P ( r ) ) >  (8) 

was found to be unexpectedly successful. Here, E:FA(p(r)) is usually calculated from 
the perturbative so l~ t ion’~  or the numerical simulation” of the jellium problem which is 
defined by Kon(r) = const. 

In principle DFTLDA only allows one to calculate static properties like the ground 
state energy or its derivatives. However, one of the major applications of LDA is the 
calculation of band structures. To this end, the Lagrange parameters ~i are interpreted 
as the physical (one-particle) energies of the system under consideration. Since the true 
ground-state is not a simple one-particle wave-function, this is an approximation beyond 
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First principles information: 
atomic numbers, crystal structure (lattice, atomic positions) 

Choose initial electronic density p ( r )  

Solve Kohn-Sham equations [Eq. (6)] 

~~~~~~ 

Calculate electronic density [Es. (5)], 
N 

Iterate to self-consistency 

Calculate band structure Ei(k) [Eq. (6)], partial and total DOS, self-consistent 
Hamiltonian [Eq. (ll)] ==2 LDA+DMFT, total energy ELp] @3q. (3)], . . . 

Figure 1. How diagram of the DFlXDA dculations. 

DIT. Actually, this approximation corresponds to the replacement of the Hamiltonian (1) 
bY 

For practical calculations one needs to expand the field operators w.r.t. a basis @izrn ,  e.g., 
a linearized muffin-tin orbital (LMTO)19 basis (i denotes lattice sites; I and m are orbital 
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indices). In this basis, 

G+(r, n) = 1 E&ailm(r) 
il m 

such that the Hamiltonian (9) reads 

Here, t i Z m  = c ~ ~ ~ c , ~ ~ .  -4 ' U  

for ilm # jl'm' and zero otherwise; &ilm denotes the corresponding diagonal part. 
As for static properties, the LDA approach based on the self-consistent solution of 

Hamiltonian (1 1) together with the calculation of the electronic density Eq. (5)  [see the 
flow diagram Fig. 13 has also been highly successful for band structure calculations - 
but only for weakly correlated materials? It is not reliable when applied to correlated 
materials and can even be completely wrong because it treats electronic correlations only 
very rudimentarily. For example, it predicts the antiferromagnetic insulator La2Cu04 to be 
a non-magnetic metalm and also completely fails to account for the high effective masses 
observed in 4 f -based heavy fermion compounds. 

2.3 Supplementing LDA with local Coulomb correlations 

Of prime importance for correlated materials are the local Coulomb interactions between 
d- and f-electrons on the same lattice site since these contributions are largest. This is due 
to the extensive overlap (w.r.t. the Coulomb interaction) of these localized orbitals which 
results in strong correlations. Moreover, the largest non-local contribution is the nearest- 
neighbor density-density interaction which, to leading order in the number of nearest- 
neighbor sites, yields only the Hartree term (see Ref. 4 and, also, Ref. 21) which is already 
taken into account in the LDA. To take the local Coulomb interactions into account, one 
can supplement the LDA Hamiltonian (1 1) with the local Coulomb matrix approximated 
by the (most important) matrix elements Ugkt (Coulomb repulsion and Z-component of 
Hund's rule coupling) and Jmmt (spin-flip terms of Hund's rule coupling) between the 
localized electrons (for which we assume i = id and 1 = Id):  

Here, the prime on the sum indicates that at least two of the indices of an operator have to be 
different, and if =4 (t) for G =t (4). A term fifDA is subtracted to avoid double-counting 
of those contributions of the local Coulomb interaction already contained in HLDA. Since 
there does not exist a direct microscopic or diagrammatic link between the model Hamil- 
tonian approach and LDA it is not possible to express fifDA rigorously in terms of U ,  J 
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and p. A commonly employed approximation for kfDA assumes the LDA energy E&A 
of HfDA to be22 

Here, n d u  = Em nildFu = Cm(iiildmu) is the total number of interacting electrons per 
spin, n d  = E, ndu ,  U is the average Coulomb repulsion and J the average exchange or 
Hund's rule coupling. In typical applications we have flmk U, JmmI E J ,  U.'$ = 
U - J - J&,I for m # m' (here, the first term J is due to the reduced Coulomb repulsion 
between different orbitals and the second term J&,I directly arises from the 2-component 
of Hund's rule coupling), and (with the number of interacing orbitals M) 

U + (M - 1)(U - J )  + ( M  - 1)(U - 2 J )  
2 M - 1  

u= 

Since the one-electron LDA energies can be obtained from the derivatives of the total 
energy w.r.t. the occupation numbers of the corresponding states, the one-electron energy 
level for the non-interacting, paramagnetic states of (13) is obtained asz 

where €adrn is defined in (1 1) and ELDA is the total energy calculated from HLDA (1 1). 
Furthermore we used ndu = 7 4 2  in the paramagnet. 

This leads to a new Hamiltonian describing the non-interacting system 

(16) 

where &fzdm is given by (15) for the interacting orbitals and &$m = Eilm for the non- 
interacting orbitals. While it is not clear at present how to systematically subtract H&A 
one should note that the subtraction of a Hartree-type energy does not substantially affect 
the overaZ2 behavior of a strongly correlated paramagnetic metal in the vicinity of a Mott- 
Hubbard metal-insulator transition (see also Section 2.7). 

In the following, it is convenient to work in reciprocal space where the matrix elements 
of @DA, Le., the LDA one-particle energies without the local Coulomb interaction, are 
given by 

0 -u -ut "U 
H i D A  = (6ilm,jllmlEilmnum + tilm,jl'm'CilrnCjI'm'), 

ilm, jl' m' ,u 

Here, q is an index of the atom in the elementary Unit Cell, (HLDA(k))qlm,q'l'm' iS the 
matrix element of (1 1) in k-space, and Qd denotes the atoms with interacting orbitals in 
the unit cell. The non-interacting part, @DA, supplemented with the local Coulomb in- 
teraction forms the (approximated) ab initio Hamiltonian for a particular material under 
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investigation: 

To make use of this ab initio Hamiltonian it is still necessary to determine the Coulomb 
interaction U. To this end, one can calculate the LDA ground state energy for different 
numbers of interacting electrons nd ("constrained LDA"23) and employ Fq. (14) whose 
second derivative w.r.t. nd yields U. However, one should keep in mind that, while the 
total LDA spectrum is rather insensitive to the choice of the basis, the calculation of U 
strongly depends on the shape of the orbitals which are considered to be interacting. E.g., 
for LaTiOs at a Wigner Seitz radius of 2.37 a.u. for Ti a LMTO-ASA calculation24 using 
the TB-LIvlTO-ASA codeI9 yielded U = 4.2 eV in comparison to the value U = 3.2 eV 
calculated by ASA-LMTO within orthogonal representation.= Thus, an appropriate basis 
like LMTO is mandatory and, even so, a significant uncertainty in U remains. 

2.4 Dynamical mean-field theory 

The many-body extension of LDA, ECq. (18), was proposed by Anisimov et al." in the 
context of their LDA+U approach. Within LDA+U the Coulomb interactions of (18) are 
treated within the Hartree-Fock approximation. Hence, LDA+U does not contain true 
many-body physics. While this approach is successful in describing long-range ordered, 
insulating states of correlated electronic systems it fails to describe strongly correlated 
paramagnetic states. To go beyond LDA+U and capture the many-body nature of the 
electron-electron interaction, i.e., the frequency dependence of the self-energy, various ap- 
proximation schemes have been proposed and applied recently.122G3o One of the most 
promising approaches, first implemented by Anisimov et a1.,I2 is to solve (18) within 
DMFT*" ("LDA+DMFT"). Of all extensions of LDA only the LDA+DMFT approach 
is presently able to describe the physics of strongly correlated, paramagnetic metals with 
well-developed upper and lower Hubbard bands and a narrow quasiparticle peak at the 
Fermi level. This characteristic three-peak structure is a signature of the importance of 
many-body  effect^.^.^ 

During the last ten years, DMFT has proved to be a successful approach to investigate 
strongly correlated systems with local Coulomb interactions." It becomes exact in the 
limit of high lattice coordination numbers3s4 and preserves the dynamics of local interac- 
tions. Hence, it represents a dynamical mean-field approximation. In this non-perturbative 
approach the lattice problem is mapped onto an effective single-site problem (see Fig. 2) 
which has to be determined self-consistently together with the k-integrated Dyson equation 
connecting the self energy C and the Green function G at frequency w: 

Here, 1 is the unit matrix, p the chemical potential, the matrix HiDA(k) is defined in 
(17), C ( w )  denotes the self-energy matrix which is non-zero only between the interacting 
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w 
Figure 2. If the number of neighboring lattice sites goes to infinity, the central limit theorem holds and fluctua- 
tiom ftom site-to-site can be neglected. This means that the influence of these neighboring sites can be replaced 
by a mean influence, the dynamiczl mean-field described by the self energy Cy, (w). This DMFT problem is 
equivalent to the self-consistent solution of the k-integrated Dyson equation (21) and the multi-band Anderson 
impurity model 4. (20). 

orbitals, [...I-' implies the inversion of the matrix with elements n (=qZm), n'(=q'Z'm'), 
and the integration extends over the Brillouin zone with volume VB . 

The DMFT single-site problem depends on G(w)-l  = G(w)- l  + C ( w )  and is 
equivalent7-* to an Anderson impurity model (the history and the physics of this model 
is summarized by Anderson in Ref. 31) if its hybridization A(w) satisfies G-l(w) = 
w - 1 dw'A(w')/(w - w'). The local one-particle Green function at a Matsubara fre- 
quency iw, = i(2v + 1)~/@ (@: inverse temperature), orbital index m ( I  = Id,  q = qd), 
and spin u is given by the following functional integral over Grassmann variables 1/1 and 
?y: 

GEm = -1 z /o [$ ]o [$* ]$~m~~~ed[~~~*~~- l ] .  (20) 

Here, 2 = J D [ $ ] D [ ~ ] $ ~ m $ ~ &  exp(A[$, $*, G - l ] )  is the partition function and the 
single-site action A has the form (the interaction part of A is in terms of the "imaginary 
time" r, i.e., the Fourier transform of w,) 

A[$,$*, F ' I= $Zz(G;m)- 'Cm 
w , m  

2 E' U""I mm' dT $: (T)$<: (7)$<1(7) 

+s JmmI / d r  +Z (T)$g(r)$z (7)+;1(7) - 

2 
mu,md 0 

1 '  
B 

(21) 

This single-site problem (20) has to be solved self-consistently together with the k- 
integrated Dyson equation (19) to obtain the DMFT solution of a given problem, see the 
flow diagram Fig. 3. 

Due to the equivalence of the DMFT single-site problem and the Anderson impurity 
problem a variety of approximative techniques have been employed to solve the DMFT 
quations, such as the iterated perturbation theory (IPT)'." and the non-crossing approxi- 
mation (NCA),32-34 as well as numerical techniques like quantum Monte Carlo simulations 

0 mu,m 
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Choose an initial self-energy C 

Calculate G from C via the k-integrated Dyson Eq. (19): 

6 = ( G - l +  E)-' 

Calculate G from 6 via the DMFT single-site problem Eq. (20) 

Cnew = G-' - G-' 

Iterate with C = Cnew until convergence, i.e. I IC - Cne, I I < E 

Figure 3. Flow diagram of the DMFT self-consistency cycle. 

(QMC)?' exact diagonalization or numerical renormalization group (NRG).37 
QMC and NCA will be discussed in more detail in Section 2.5 and 2.6, respectively. IPT is 
non-self-consistent second-order perturbation theory in U for the Anderson impurity prob- 
lem (20) at half-filling. It represents an ansatz that also yields the correct perturbational 
U2-term and the correct atomic limit for the self-energy off half-filling?8 for further details 
see Refs. 12,26,38. ED directly diagonalizes the Anderson impurity problem at a limited 
number of lattice sites and orbitals. NRG first replaces the conduction band by a discrete 
set of states at (D: bandwidth; n = 0, ...,Ns) and then diagonalizes this problem 
iteratively with increasing accuracy at low energies, i.e., with increasing Nb. In principle, 
QMC and ED are exact methods, but they require an extrapolation, Le., the discretization 
of the imaginary time Ar + 0 (QMC) or the number of lattice sites of the respective 
impurity model N, + 00 (ED), respectively. 

In the context of LDA+DMFT we refer to the computational schemes to solve the 
DMFT equations discussed above as LDA+DIvfFT(X) where X=IPT,12 NCA?O QMC" 
have been investigated in the case of Lal-,SrzTi03. The same strategy was formulated 
by Lichtenstein and KatsnelsonX as one of their LDA++ approaches. Lichtenstein and 
Katsnelson applied LDA+DIV@T(IPT);~ and were the first to use LDA+DMFT(QMC),"3 

. -  
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to investigate the spectral properties of iron. Recently, also V203,44 C ~ ~ - , S ~ , R U O ~ $ ~ * ~  
Ni$' Fe$7 P U , ~ ~ ' ~  and Cemss1 have been studied by LDA+DMFT. Realistic investiga- 
tions of itinerant ferromagnets (e.g., Ni) have also recently become possible by combining 
density functional theory with multi-band Gutzwiller wave functions?2 

2.5 QMC method to solve DMFT 

The self-consistency cycle of the DMFT (Fig. 3) requires a method to solve for the dynam- 
ics of the single-site problem of DMET, i.e., Eq. (20). The QMC algorithm by Hirsch and 
Fye35 is a well established method to find a numerically exact solution for the Anderson 
impurity model and allows one to calculate the impurity Green function G at a given 9-l 
as well as correlation functions. In essence, the QMC technique maps the interacting elec- 
tron problem Eq. (20) onto a sum of non-interacting problems where the single particle 
moves in a fluctuating, time-dependent field and evaluates this s u m  by Monte Carlo sam- 
pling, see the flow diagram Fig. 4 for an overview. To this end, the imaginary time interval 
[O,j?] of the functional integral Eq. (20) is discretized into A steps of size Ar = j?/A, 
yielding support points 7 1  = ZAr with Z = 1. . . A. Using this Trotter discretization, the 
integral J: dr is transformed to the s u m  EL, Ar and the exponential terms in Eq. (20) 
can be separated via the Trotter-Suzuki formula for operators a and &53 

1=1 

which is exact in the limit Ar + 0. The single site action A of Eq. (21) can now be written 
in the discrete, imaginary time as 

A-1 

A-I 

where the first term was Fourier-transformed from Matsubara frequencies to imaginary 
time. In a second step, the M(2M - 1) interaction terms in the single site action A are 
decoupled by introducing a classical auxiliary field szkl : 

(24) 

where cosh(XEkl) = exp(ArU;iI /2) and M is the number of interacting orbitals. This 
so-called discrete Hirsch-Fye-Hubbard-Stratonovich transformation can be applied to the 
Coulomb repulsion as well as the Z-component of Hund's rule coupling.54 It replaces the 
interacting system by a sum of AM(2M-1) auxiliary fields s f , k I .  The functional integral 
can now be solved by a simple Gauss integration because the Fermion operators only enter 

1 
2 
- exp { A ~ ~ ~ ~ k . . f ~ ~ l ( $ ; l * $ & l  - &;&l)} J 

y',/ =fl 
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quadratically, i.e., for a given configuration s = {srzk,} of the auxiliary fields the system 
is non-interacting. The quantum mechanical problem is then reduced to a matrix problem 

with the partition function Z ,  the matrix 

~2 = ~ p [ ~ ; - l +  y- le -TZ '  + 1 - 

iZl1, = -all, A"" -ad urn' 

(26) 
and the elements of the matrix i g  

(27) 

Here age, = 20(a' - a + Suut[m' - m] - I.) changes sign if (ma) and (m'd) are 
exchanged. For more details, e.g., for a derivation of Eq. (26) for the matrix M ,  see 
Refs. 11,35. 

Since the sum in Eq. (25) consists of 2AM':2M-1) addends, a complete summation 
for large A is computationally impossible. Therefore the Monte Carlo method, which is 
often an efficient way to calculate high-dimensional sums and integrals, is employed for 
importance sampling of Eq. (25). In this method, the integrand F ( z )  is split up into a 
normalized probability distribution P and the remaining term 0: 

mml ammt Slmmj. 
m'u' 

J dzF(z)  = dz O(z) P(z)  E ( 0 ) p  J 
J d z ~ ( z )  = 1 and ~ ( z >  2 0. (29) 

(28) 

with 

In statistical physics, the Boltzmann distribution is often a good choice for the function P: 
1 
2 

P(z)  = - exp(-DE(z)). 

For the sum of Eq. (25), this probability distribution translates to 
1 
2 

P(s)  = - det MZ 
mu 

with the remaining term 

Instead of summing ov 

5s -1 O(S)21112 = [ (M, 1 11112  

r all possible configurations, the Mon 
(32) 

5 Carlo simulation gen- 
erates configurations zi  with respect to the probability distribution P(z)  and averages the 
observable O(z) over these zi. Therefore the relevant parts of the phase space with a large 
Boltzmann weight are taken into account to a greater extent than the ones with a small 
weight, coining the name importance sampling for this method. With the central limit 
theorem one gets for h/ statistically independent addends the estimate 
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Choose random auxiliary field configuration s = {sp,$} 

Calculate the current Green function G,,, from Eq. (32) 

(GcurKzlt2 = [(W?)-']1112 

with M fromEq. (26) and the input G;(uV)-l = G&(uV)-l + X & ( u V ) .  

Do NWU times (warm up sweeps) 

I I I 
MC-weep (Gcur 9 s) 

Do NMC times (measurement sweeps) 

MC-meep (Gcur , s) 

G = G + G,,,/NMC 

Figure 4. Flow diagram of the QMC algorithm to calculate the Green function matrix G using the procedure 
MC-weep of Fig. 5. 

~~~~ 

Choose M(2M - 1)h times a set (1 m m' u u'), 
define Snew to be s except for the element sp;;, which has opposite sign. 

Calculate flip probability P,+,,,, = min(1, P(snew)/P(s)) with 

mu mu 

and M from Eq. (26). 

Random number E (0,l) < P,+,,,, ? 

I 

s = Snew; recalculate G,,, according to EQ. (32). I Keep s 

Figure 5. Procedure MC-weep using the MetropoliSs rule to change the sign of ST;:#. The recalculation of 
G,,,, is., the matrix M of Eq. (26), simplifies to O(A2) operations if only one s;gm# changes sign.11.35 
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Here, the error and with it the number of needed addends N is nearly independent of 
the dimension of the integral. The computational effort for the Monte Carlo method is 
therefore only rising polynomially with the dimension of the integral and not exponentially 
as in a normal integration. Using a Markov process and single spin-flips in the auxiliary 
fields, the computational cost of the algorithm in leading order of A is 

2aM(2M - l )A3  x number of MC-sweeps, (34) 

where a is the acceptance rate for a single spin-flip. 
The advantage of the QMC method (for the algorithm see the flow diagram Fig. 4) is 

that it is (numerically) exact. It allows one to calculate the one-particle Green function as 
well as two-particle (or higher) Green functions. On present workstations the QMC ap- 
proach is able to deal with up to seven interacting orbitals and temperatures above about 
room temperature. Very low temperatures are noc accessible because the numerical effort 
grows like A3 oc l / T 3  . Since the QMC approach calculates G(T) or G(iwn) with a sta- 
tistical error, it also requires the maximum entropy meth~d’~ to obtain the Green function 
G(w) at real (physical) frequencies w. 

2.6 NCA method to solve DMFT 

The NCA approach is a resolvent perturbation theory in the hybridization parameter A(w) 
of the effective Anderson impurity pr~blem.~’ Thus, it is reliable if the Coulomb interac- 
tion U is large compared to the band-width and also offers a computationally inexpensive 
approach to check the general spectral features in other situations. 

To see how the NCA can be adapted for the DMFT, let us rewrite Eq. (19) as 

wherez = w +iO++p. Again, H i D A ( k ) ,  C ( z )  and henceGf(<) and G,,(z) arematrices 
in orbital space. Note that C(z) has nonzero entries for the correlated orbitals only. 

On quite general grounds, Eq. (35) can be cast into the form 

where 

EO=-CBO 1 
LDA (k) 

Nk k 

with the number of k points Nk and 

lim %e{A,,(w +id)} = 0 . 
w - t f w  

.-, 

, -  

Given the the matrix Eo, the Coulomb matrix U and the hybridization matrix A,, (z), 
we are now in a position to set up a resolvent perturbation theory with respect to A,, (2). 
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To this end, we first have to diagonalize the local Hamiltonian 

u qml q'm'l' 

+f U ~ ~ ' n p d l d m u n q d l d m ' u '  

mu m'u' 

1 t t - - 3 c c J m m ' ~ q d l r m u ~ q d l d m ' * ~ q ~ l d m ' u ~ q d l d m ~  
I 

mu mr 

Q 

with local eigenstates la) and energies E,. In contrast to the QMC, this approach allows 
one to take into account the full Coulomb matrix plus spin-orbit coupling. 

With the states la) defined above, the fermionic operators with quantum numbers K. = 
(q, I ,  m) are expressed as 

The key quantity for the resolvent perturbation theory is the resolvent R(z), which obeys 
a Dyson equation32 

(41) 

where Ra8(z) = l / ( a  - Ea)da~ and S,,g(z) denotes the self-energy for the local states 
due to the coupling to the environment through A@). 

The self-energy Sap (2) can be expressed as power series in the hybridization A(z)?~ 
Retaining only the lowest-, i.e. 2nd-order terms leads to a set of self-consistent integral 
equations 

R(z) = P ( Z )  + RO(z)S(z)R(z) , 

to determine Sap(z), where f(&) denotes Fermi's function and I?(&) = 
-%{A(& + io+)}. The set of equations (42) are in the literature referred to as 
non-crossing approximation (NCA), because, when viewed in terms of diagrams, they 
contain no crossing of band-clcctron lines. In order to close the cycle for the DMFT, we 
still have to calculate the true local Green function Gu(z). This, however, can be done 
within the same approximation with the result 
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R,,(z) denotes the local partition function and /3 is the 

inverse temperature. 
Like any other technique, the NCA has its merits and disadvantages. As a self- 

consistent resummation of diagrams it constitutes a conserving approximation to the An- 
derson impurity model. Furthermore, it is a (computationally) fast method to obtain dy- 
namical results for this model and thus also within Dh4lT. However, the NCA is known to 
violate Fermi liquid properties at temperatures much lower than the smallest energy scale 
of the problem and whenever charge excitations become d ~ m i n a n t . ~ ~ . ~ ~  Hence, in some 
parameter ranges it fails in the most dramatic way and must therefore be applied with 
considerable care.34 

2.7 Simplifications for transition metal oxides with well separated e,- and 
tz,-bands 

Many transition metal oxides are cubic perovskites, with only a slight distortion of the 
cubic crystal structure. In these systems the transition metal d-orbitals lead to strong 
Coulomb interactions between the electrons. The cubic crystal-field of the oxygen causes 
the d-orbitals to split into three degenerate t2 , -  and two degenerate e,-orbitals. This split- 
ting is often so strong that the t zg -  or e,-bands at the Fermi energy are rather well sepa- 
rated from all other bands. In this situation the low-energy physics is well described by 
taking only the degenerate bands at the Fermi energy into account. Without symmetry 
breaking, the Green function and the self-energy of these bands remain degenerate, i.e., 
Gqlm,q~pmt (z )  = G ( z ) ~ ~ ~ , , ~ J ~ , I  and Cqlm,qlpm~ (z)  = C ( ~ ) b ~ l , , ~ ~ l ~ ~ ~  for 1 = ld and 
q = qd (where and qd denote the electrons in the interacting band at the Fermi energy). 
Downfolding to a basis with these degenerate qd-ld-bands results in an effective Hamilto- 
nian H:;: (where indices 1 = Id and q = qd are suppressed) 

Due to the diagonal structure of the self-energy the degenerate interacting Green function 
can be expressed via the non-interacting Green function Go (w) :  

(45) 
No (4 G(w)  =Go (w - C ( w ) )  = de J w - C ( w )  - € -  

Thus, it is possible to use the Hilbert transformation of the unperturbed LDA-calculated 
density of states (DOS) No(€) ,  i.e., Eq. (43, instead of Eq. (19). This simplifies the 
calculations considerably. With Eq. (45) also some conceptual simplifications arise: (i) 
the subtraction of HfDA in (45) only results in an (unimportant) shift of the chemical 
potential and, thus, the exact form of HfDA is irrelevant; (ii) Luttinger's theorem of Fermi 
pinning holds, Le., the interacting DOS at the Fermi energy is fixed at the value of the non- 
interacting DOS at T = 0 within a Fermi liquid: (iii) as the number of electrons within the 
different bands is fixed, the LDA+DMFT approach is automatically self-consistent. 

In this context it should be noted that the approximation Eq. (45) is justified only if the 
overlap between the t 2 ,  orbitals and the other orbitals is rather weak. 
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2.8 Extensions of the LDA+DMFI' scheme 

-- . 

In the present form of the LDA+DMFT scheme the band-structure input due to LDA and 
the inclusion of the electronic correlations by DMFT are performed as successive steps 
without subsequent feedback. In general, the DMFT solution will result in a change of the 
occupation of the different bands involved. This changes the electron density p(r) and, 
thus, results in a new LDA-Hamiltonian &,DA (1 1) since &)A depends on p(r). At 
the same time also the Coulomb interaction U changes and needs to b& determined by a 
new constrained LDA calculation. In a seZ$-consistent LDA+DMFT scheme, HLDA and U 
would define a new Hamiltonian (1 8) which again needs to be solved within DMFT, etc., 
until convergence is reached: 

Without Coulomb interaction (U = 0) this scheme reduces to the self-consistent solution of 
the Kohn-Sham equations. A self-consistency scheme similar to Fq. (46) was employed by 
Savrasov and Kotliai'g in their calculation of Pu. An ab initio DMFT scheme formulated 
directly in the continuum was recently proposed by Chitra and Kotliar?* 

3 Comparison of different methods to solve DMFT: the model system 
La1 --z S r, Ti03 

The stoichiometric compound LaTi03 is a cubic perovskite with a small orthorhombic 
distortion (L Ti - 0 - Ti = 155°)59 and is an antiferromagnetic insulatop below 
TN = 125 K.6' Above TN, or at low Sr-doping z, and neglecting the small orthorhombic 
distortion (Le., considering a cubic structure with the same volume), LaTiO3 is a strongly 
correlated, but otherwise simple paramagnet with only one 3d-electron on the trivalent Ti 
sites. This makes the system a perfect trial candidate for the LDA+DMFT approach. 

The LDA band-structure calculation for undoped (cubic) LaTiOs yields the DOS 
shown in Fig. 6 which is typical for early transition metals. The oxygen bands, rang- 
ing from -8.2 eV to -4.0 eV, are filled such that Ti is three-valent. Due to the crystal-field 
splitting, the Ti 3d-bands separates into two empty e,-bands and three degenerate t2,- 
bands. Since the tzg-bands at the Fermi energy are well separated also from the other bands 
we employ the approximation introduced in section 2.5 which allows us to work with the 
LDA DOS [Eq. (45)] instead of the full one-particle Hamiltonian H:DA of [Eq. (19)l. In 
the LDA+DMFT calculation, Sr-doping z is taken into account by adjusting the chemical 
potential to yield n = 1 - z = 0.94 electrons within the tz,-bands, neglecting effects 
disorder and the z-dependence of the LDA DOS (note, that Sr and Ti have a very similar 
band structure within LDA). There is some uncertainty in the LDA-calculated Coulomb 
interaction parameter U N 4 - 5 eV (for a discussion see Ref. 24) which is here assumed 
to be spin- and orbital-independent. In Fig. 7, results for the spectrum of h.94Sr0.o~TiO3 
as calculated by LDA+DMFT(IPT, NCA, QMC) for the same LDA DOS at T = 1000 K 
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Figure 6.  Densities of states of LaTiO3 calculated with LDA-LMTO. Upper figure: total DOS; lower figure: 
partial t 2 ,  (solid lines) and e, (dashed lines) DOS [reproduced from Ref.241. 

and U = 4 eV are compared.24 In Ref. 24 the formerly presented and NCA3' spec- 
tra were recalculated to allow for a comparison at exactly the same parameters. All three 
methods yield the typical features of strongly correlated metallic paramagnets: a lower 
Hubbard band, a quasi-particle peak (note that IPT produces a quasi-particle peak only 
below about 250K which is therefore not seen here), and an upper Hubbard band. By 
contrast, within LDA the correlation-induced Hubbard bands are missing and only a broad 
central quasi-particle band (actually a one-particle peak) is obtained (Fig. 6). 

While the results of the three evaluation techniques of the DMFT equations (the ap- 
proximations IPT, NCA and the numerically exact method QMC) agree on a qualitative 
level, Fig. 7 reveals considerable quantitative differences. In particular, the IPT quasi- 
particle peak found at low temperatures (see right inset of Fig. 7) is too narrow such that 
it disappears already at about 250 K and is, thus, not present at T x 1000 K. A similarly 
narrow IPT quasi-particle peak was found in a three-band model study with Bethe-DOS 
by Kajueter and K~tliar.~* Besides underestimating the Kondo temperature, IPT also pro- 
duces notable deviations in the shape of the upper Hubbard band. Although NCA comes 
off much better than IPT it still underestimates the width of the quasiparticle peak by a 
factor of two. Furthermore, the position of the quasi-particle peak is too close to the lower 
Hubbard band. In the left inset of Fig. 7, the spectra at the Fermi level are shown. At the 
Fermi level, where at sufficiently low temperatures the interacting DOS should be pinned 
at the non-interacting value, the NCA yields a spectral function which is almost by a fac- 
tor of two too small. The shortcomings of the NCA-results, with a too small low-energy 
scale and too much broadened Hubbard bands for multi-band systems, are well understood 
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Figure 7. Spectrum of La~.g&o.~TiOs as calculated by LDA+DhfFT(X) at T = 0.1 eV (W 1000 K) and 
U = 4 eV employing the approximations X=IE'T, NCA, and numerically exact QMC. Inset left Behavior at 
the Fami level including the LDA DOS. Inset right X = m  and NCA specIra at T = 80 K [reproduced from 
Ref.241. 

and related to the neglect of exchange type diagrams.63 Similarly, the deficiencies of the 
IPT-results are not entirely surprising in view of the semi-phenomenological nature of this 
approximation, especially for a system off half filling. 

This comparison shows that the choice of the method used to solve the DMlT equations 
is indeed important, and that, at least for the present system, the approximations IPT and 
NCA differ quantitatively from the numerically exact QMC. Nevertheless, the NCA gives 
a rather good account of the qualitative spectral features and, because it is fast and can 
often be applied to comparatively low temperatures, can yield an overview of the physics 
to be expected. 

Photoemission spectra provide a direct experimental tool to study the electronic struc- 
ture and spectral properties of electronically correlated materials. A comparison of 
LDA+DMFT(QMC) at lo00 with the experimental photoemission spectruma of 
Lao.&ro.o,jTiOs is presented in Fig 8. To take into account the uncertainty in U,% we 
present results for U = 3.2,4.25 and 5 eV. All spectra are multiplied with the Fermi step 
function and are Gauss-broadened with a broadening parameter of 0.3 eV to simulate the 
experimental resolution.64 LDA band structure calculations, the results of which are also 
presented in Fig. 8, clearly fail to reproduce the broad band observed in the experiment at 1- 
2 eV below the Fermi energy.a Taking the correlations between the electrons into account, 
this lower band is easily identified as the lower Hubbard band whose spectral weight orig- 
inates from the quasi-particle band at the Fermi energy and which increases with U. The 
best agreement with experiment concerning the relative intensities of the Hubbard band 
and the quasi-particle peak and, also, the position of the Hubbard band is found for U = 5 
eV. The value U = 5 eV is still compatible with the ab initio calculation of this parameter 
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Figure 8. Comparison of the experimental photoemission spe~trum,~ the LDA result, and the 
LDA+DMFT(QMC) calculation for Izq.94Sr0.06Ti03 (Le., 6% hole doping) and different Coulomb interaction 
U = 3.2,4.25, and 5 eV [reproduced from Ref.241. 

within LDA.% One should also bear in mind that photoemission experiments are sensitive 
to surface properties. Due to the reduced coordination number at the surface the bandwidth 
is likely to be smaller, and the Coulomb interaction less screened, i.e., larger. Both effects 
make the system more correlated and, thus, might also explain why better agreement is 
found for U = 5 eV. Besides that, also the polycrystalline nature of the sample, as well 
as spin and orbital66 fluctuation not taken into account in the LDA+DMFT approach, will 
lead to a further reduction of the quasi-particle weight. 

4 Mott-Hubbard metal-insulator transition in VZO, 

One of the most famous examples of a cooperative electronic phenomenon occurring 
at intermediate coupling strengths is the transihon between a paramagnetic metal and a 
paramagnetic insulator induced by the Coulomb interaction between the electrons - the 
Mott-Hubbard metal-insulator transition. The question concerning the nature of this tran- 
sition poses one of the fundamental theoretical problems in condensed matter physi~s.6~ 
Correlation-induced metal-insulator transitions (MIT) are found, for example, in transition 
metal oxides with partially filled bands near the Fermi level. For such systems band theory 
typically predicts metallic behavior. The most famous example is V203 doped with Cr as 
shown in Fig. 9. While at low temperatures V2103 is an antiferromagnetic insulator with 
monoclinic crystal symmetry, it has a corundum structure in the high-temperature param- 
agnetic phase. All transitions shown in the phase diagram are of first order. In the case 
of the transitions from the high-temperature paramagnetic phases into the low-temperature 
antiferromagnetic phase this is naturally explained by the fact that the transition is accom- 
panied by a change in crystal symmetry. By contrast, the crystal symmetry across the MIT 

. .  

. -  

20 



5 o o o ~ ~ l ~ Q p ~ (  0 , I 0.02 , I 0.04 0.06 I 

I 

I 
CRITICAL POIN 

400 
I 
i 
I 

I 
I 
1 
I 
I 
I 

I 
1 
I 

I 
I t 

METAL 
. 
. 

0 i a t m  

PRESSURE EXP. 
v203 

0 0.038 Cr 
0 0.038 T i  

INSULATOR 

" h -  I 

Figure 9. Experimental phase diagram of V2O3 doped with Cr and Ti [reproduced from Ref. 681. Doping V203 
effects the lattice constants in a similar way as applying pressure (generated either by a hydrostatic pressure P ,  or 
by changing the V-concCntration from V2O3 to V2-,O3) and leads to a Moa-Hubbard transition between the 
punmagnetic insulator (PI) and metal (PM). At lower temperatures, a Moa-Heisenberg transition betwcen the 
paramagnetic metal (PM) and the antifemmagnetic insulator (AFI) is observed. 

in the paramagnetic phase remains intact, since only the ratio of the c/a axes changes dis- 
continuously. This may be taken as an indication for the predominantly electronic origin 
of this transition which is not accompanied by any conventional long-range order. From a 
models point of view the MIT is triggered by a change of the ratio of the Coulomb interac- 
tion U relative to the bandwidth W. Originally, Mott considered the extreme limits W = 0 
(when atoms are isolated and insulating) and U = 0 where the system is metallic. While it 
is simple to describe these limits, the crossover between them, i.e., the metal-insulator tran- 
sition itself, poses a very complicated electronic correlation problem. Among others, this 
metal-insulator transition has been addressed by Hubbard in various  approximation^^^ and 
by Brinkman and Rice within the Gutzwiller approximation?0 During the last few years, 
our understanding of the MIT in the one-band Hubbard model has considerably improved, 
in particular due to the application of dynamical mean-field theory?l 

Both the paramagnetic metal V2O3 and the paramagnetic insulator 
( V O . S S ~ C ~ O . O ~ S ) ~ O ~  have the same corundum crystal structure with only slightly 
different lattice Nevertheless, within LDA both phases are found to be 
metallic (see Fig. 10). The LDA DOS shows a splitting of the five Vanadium d-orbitals 
into three tzg states near the Fermi energy and two e: states at higher energies. This 
reflects the (approximate) octahedral arrangement of oxygen around the vanadium atoms. 
Due to the trigonal symmetry of the corundum structure the tzg states are further split 
into one qg band and two degenerate e: bands, see Fig. 10. The only visible difference 
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3d2 Vy r 
Figure 10. Left Scheme of the 3d levels in the corundum crystal shucture. Right Partial LDA DOS of the 3d 
bands for paramagnetic metallic V203 and insulating (vO.962cr0.038)203 [reproduced from Ref.441. 

between (Vo.g62Cr0 .~~~)~03 and V2O3 is a slight narrowing of the t2g and e; bands by 
M 0.2 and 0.1 eV, respectively as well as a weak downshift of the centers of gravity of 
both groups of bands for V2O3. In particular, the insulating gap of the Cr-doped system is 
seen to be missing in the LDA DOS. Here we will employ LDA+DMI;T(QMC) to show 
explicitly that the insulating gap is caused by the electronic correlations. In particular, we 
make use of the simplification for transition metal oxides described in Section 2.7 and 
restrict the LDA+DMFT(QMC) calculation to the three t Z g  bands at the Fermi energy, 
separated from the e: and oxygen bands. 

While the Hund's rule coupling J is insensitive to screening effects and may, thus, 
be obtained within LDA to a good accuracy ( J  = 0.93 eVZ), the LDA-calculated value 
of the Coulomb repulsion U has a typical uncertainty of at least 0.5 eV.24 To overcome 
this uncertainty, we study the spectra obtained by LDA+Dm(QMC) for three different 
values of the Hubbard interaction (U = 4.5,5.0,5.5) in Fig. 11. All QMC results presented 
were obtained for T = 0.1 eV. However, simulations for V2O3 at U = 5 eV, T = 0.143 
eV, and T = 0.067 eV suggest only a minor smoothing of the spectrum with increasing 
temperature. From the results obtained we conclude that the critical value of U for the 
MIT is at about 5 eV: At U = 4.5 eV one observes pronounced quasiparticle peaks at 
the Fermi energy, Le., characteristic metallic behavior, even for the crystal structure of the 
insulator (V0.962Cro.038)203, while at U = 5.5 eV the form of the calculated spectral 
function is typical for an insulator for both sets of crystal structure parameters. At U = 5.0 
eV one is then at, or very close to, the MIT since there is a pronounced dip in the DOS at the 
Fermi energy for both ulg and e: orbitals for the crystal structure of (V0.962Cr0.038)203, 
while for pure V2O3 one still finds quasiparticle peaks. (We note that at T M 0.1 eV one 
only observes metallic-like and insulator-like behavior, with a rapid but smooth crossover 
between these two phases, since a sharp MIT occurs only at lower  temperature^^^.^^). The 
critical value of the Coulomb interaction U M 5 eV is in reasonable agreement with the 
values determined spectroscopically by fitting to model calculations, and by constrained 
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Figure 11. LDA+DMFT(QMC) spcctra for paramagnetic (V0.962Cro.038)203 (“ins.”) and Vz03 (“met.”) at 
U = 4.5,5 and 5.5 eV, and T = 0.1 eV M 1000 K [reprodud from Ref.441. 

LDA, seeu for details. 
To compare with the photoemission spectrum of V2O3 spectrum by Schramme et ~ 1 . ~ ~  

and by Kim et ~ 1 . ~ ~  as well as with the X-ray absorption data by Muller et ~ 1 . : ~  the 
LDA+DM€T(QMC) spectrum of Fig. 11 is multiplied with the Fermi function at T = 0.1 
eV and Gauss-broadened by 0.05 eV to account for the experimental resolution. The the- 
oretical result for U = 5 eV is seen to be in good agrmment with experiment (Fig. 12). In 
contrast to the LDA results, our results not only describe the different bandwidths above 
and below the Fermi energy (B 6 eV and M 2 - 3 eV, respectively), but also the position 
of two (hardly distinguishable) peaks below the Fermi energy (at about -1 eV and -0.3 eV) 
as well as the pronounced two-peak structure above the Fermi energy (at about 1 eV and 
3-4 eV). While LDA also gives two peaks below and above the Fermi energy, their position 
and physical origin is quite different. Within LDA+DMFT(QMC) the peaks at -1 eV and 
3-4 eV are the incoherent Hubbard bands induced by the electronic correlations whereas in 
the LDA the peak at 2-3 eV is caused by the e,Q states and that at -1 eV is the band edge 
maximum of the ulg and e: states (see Fig. 10). Note that the theoretical and experimen- 
tal spectrum is highly asymmetric w.r.t the Fermi energy. This high asymmetry which is 
caused by the orbital degrees of freedom is missing in the one-band Hubbard model which 
was used by Rozenberg et ~ 1 . ~ ~  to describe the optical spectrum of Vz 03. 

The comparison between theory and experiment for Cr-doped insulating V203 is not 
as good as for metallic V2O3, see Ref. 75. This might be, among other reasons, due to 
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Figure 12. Comparison of the LDA+DMR(QMC) spectrum"" at U = 5 eV and T = 0.1 eV M 1000 K below 
(left Figure) and above (right Figure) the Fermi energy (at 0 eV) with the LDA spectrum4 and the experimental 
spectrum (left: photoemission spectrurn of Schramme et al.74 and Kim et QI.;~' right: X-ray absorption spectrum 
of Miiller et ~ 1 . ~ ~ ) .  

the different Cr-doping of experiment and theory, the difference in temperatures (which 
is important because the insulating gap of a Mott insulator is filled when increasing the 
temperature'l), or the fact that every V ion has a unique neighbor in one direction, i.e., the 
LDA supercell calculation has a pair of V ions per unit cell. The latter aspect has so far not 
been included but arises naturally when one goes from the simplified calculation scheme 
described in Section 2.7 (and employed in the present Section with different self-energies 
for the ulg and e; bands) to a full Hamiltonian calculation. 

Particularly interesting are the spin and the orbital degrees of freedom in V203. From 
our calculations,4 we conclude that the spin state of V2 O3 is S = 1 throughout the Mott- 
Hubbard transition region. This agrees with the measurements of Park et ~ 1 . ~ ~  and also 
with the data for the high-temperature su~ceptibility.~~ But, it is at odds with the S = 1/2 
model by Castellani et aLgO and with the results for a one-band Hubbard model which cor- 
responds to S = 1/2 in the insulating phase and, contrary to our results, shows a substantial 
change of the local magnetic moment at the MIT.71 For the orbital degrees of freedom we 
find a predominant occupation of the e; orbitals, but with a significant admixture of alg 
orbitals. This admixture decreases at the MIT: in the metallic phase we determine the 
occupation of the (ulg, eil, e" ) orbitals as (0.37, 0.815, 0.815), and in the insulating 
phase as (0.28, 0.86, 0.86). This should be compared with the experimental results of 
Park et ~ 1 . ~ ~  From their analysis of the linear dichroism data the authors concluded that 
the ratio of the configurations eie::eiulg is equal to 1:l for the paramagnetic metallic 
and 3:2 for the paramagnetic insulating phase, corresponding to a one-electron occupation 
of (0.5,0.75,0.75) and (0.4,0.8,0.8), respectively. Although our results show a somewhat 
smaller value for the admixture of ulg orbitals, the overall behavior, including the ten- 
dency of a decrease of the ulg admixture across the transition to the insulating state, are 
well reproduced. 

In the study above, the experimental crystal parameters of V2O3 and 
(V0.962Cro.038)203 have been taken from the experiment. This leaves the question 

g2. 
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unanswered whether a change of the lattice is the driving force behind the Mott transition, 
or whether it is the electronic Mott transition which causes a change of the lattice. For 
another system, Ce, we will show in Section 5 that the energetic changes near a Mott 
transition are indeed sufficient to cause a first-order volume change. 

5 The Cerium volume collapse: An example for a 4f-electron system 

Cerium exhibits a transition from the 7- to the a-phase with increasing pressure or de- 
creasing temperature. This transition is accompanied by an unusually large volume change 
of 15%:’ much larger than the 1-2% volume change in V2O3. The 7-phase may also be 
prepared in metastable form at room temperature in which case the reverse 7-a transition 
occurs under Similar volume collapse transitions are observed under pressure 
in F’r and Gd (for a recent review see Ref. 83). It is widely believed that these transitions 
arise from changes in the degree of 4f electron correlation, as is reflected in both the Mott 
transition” and the Kondo volume collapse (KVC)85 models. 

The Mott transition model envisions a change from itinerant, bonding character of the 
4f-electrons in the a-phase to non-bonding, localized character in the 7-phase, driven 
by changes in the 4f-4f inter-site hybridization. Thus, as the ratio of the 4f Coulomb 
interaction to the 4f-bandwidth increases, a Mott transition occurs to the 7-phase, similar 
to the Mott-Hubbard transition of the 3d-electrons in V2O3 (Section 4). 

The Kondo volume collapses5 scenario ascribes the collapse to a strong change in the 
energy scale associated with the screening of the local 4f-moment by conduction electrons 
(Kondo screening), which is accompanied by the appearance of an Abrikosov-Suhl-like 
quasiparticle peak at the Fermi level. In this model the 4f-electron spectrum of Ce would 
change across the transition in a fashion very similar to the Mott scenario, Le., a strong re- 
duction of the spectral weight at the Fermi energy should be observed in going from the a- 
to the 7-phase. The subtle difference comes about by the 7-phase having metallic f-spectra 
with a strongly enhanced effective mass as in a heavy fermion system, in contrast to the f- 
spectra characteristic of an insulator in the case of the Mott scenario. The f-spectra in the 
Kondo picture also exhibit Hubbard side-bands not only in the 7-phase, but in the a-phase 
as well, at least close to the transition. While local-density and static mean-field theories 
correctly yield the Fermi-level peaks in the f-spectra for the a-phase, they do not exhibit 
such additional Hubbard side-bands, which is sometimes taken as characteristic of the “a- 
like” phase in the Mott scenario.” However, this behavior is more likely a consequence 
of the static mean-field treatment, as correlated solutions of both Hubbard and periodic 
Anderson models exhibit such residual Hubbard side-bands in the a - l i e  regimes.= 

Typically, the Hubbard model and the periodic Anderson model are considered as 
paradigms for the Mott and KVC model, respectively. Although both models describe 
completely different physical situations it was shown recently that one can observe a sur- 
prisingly similar behavior at finite temperatures: the evolution of the spectrum and the 
local magnetic moment with increasing Coulomb interaction show very similar features 
as well as, in the case of a periodic Anderson model with nearest neighbor hybridization, 
the phase diagram and the charge c~mpressibility?~.~~ From this point of view the distinc- 
tion between the two scenarios appears to be somewhat artificial, at least at temperatures 
relevant for the description of the a-7 transition. 

For a realistic calculation of the Cerium a-7 transition, we employ the full Hamiltonian 
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Figure 13. Evolution of the 4f spectral function A(w) with volume at T = 0.136 eV (w = 0 corresponds to 
the chemical potential; curves are offset as indicated, AT = 0.lleV-'). Coinciding with the sharp anomaly 
in the correlation energy (Fig. 14), the central quasiparticle resonance disappears, at least at finite temperatures 
[reproduced from Ref. 511. 

calculation described in Sections 2.2, 2.3, and 2.4 where the one-particle Hamiltonian 
was calculated by LDA and the 4 f Coulomb interaction U along with the associated 4f 
site energy shift by a constrained LDA calculation (for details of the the two independent 
calculations presented in the current Section see Refs. 51,83 and Ref. 50). We have not 
included the spin-orbit interaction which has a rather small impact on LDA results for Ce, 
nor the intra-atomic exchange interaction which is less relevant for Ce as occupations with 
more than one 4f-electron on the same site are rare. Furthermore, the 6s-, 6p-, and 5d- 
orbitals are assumed to be non-interacting in the formalism of Q. (13), Section 2.3. Note, 
that the 4f orbitals are even better localized than the 3d orbitals and, thus, uncertainties 
in U are relatively small and would only translate into a possible volume shift for the 
a-7-transition. 

The LDA+DMFT(QMC) spectral evolution of the Ce 4f-electrons is presented in 
Fig. 13. It shows similarities to V2O3 (Fig. 11, Section 4): At a volume per atom 
V = 20A3, Fig. 13 shows that almost the entire spectral weight lies in a large quasi- 
particle peak with a center of gravity slightly above the chemical potential. This is similar 
to the LDA solution, however, a weak upper Hubbard band is also present even at this 
small volume. At the volumes 29 A3 and 34 A3 which approximately bracket the a-7 tran- 
sition, the spectrum has a three peak structure. Finally, by V = 46 A3, the central peak 
has disappeared leaving only the lower and upper Hubbard bands. However, an important 
difference to V2O3 is that the spd-spectrum shows metallic behavior and, thus, Cerium 
remains a metal throughout this transition monitored by a vanishing 4f quasiparticle reso- 
nance. 
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To study the energetic changes associated with the rapid change of the quasiparticle 
weight at the Fermi energy, we calculate the DMFT energy per site for the model Hamil- 
tonian (13) 

(47) 
T 

EDMFT = - ~(H~DA(k)Gk(iw,))eiwno+ -k uf d. 
Nk nka 

Here, Tr denotes the trace over the 16 x 16 matrices, T the temperature, Nk the number 
of k points, Gk the Green function matrix w.r.t. the orbital indices, HEDA(k) the LDA 
one-particle matrix Eq. (17), and 

.# . 

- .  

is a generalization of the one-band double occupation for multi-band models. 
Fig. 14a shows our calculated D e ( Q M C )  energies EDMFT as a function of atomic 

volume at three temperatures relative to the paramagnetic Hartree Fock (HF) energies 
EPMHF [of the Hamiltonian (13)], i.e., the energy contribution due to electronic corre- 
lations. Similarly given are the polarized HF energies which reproduce EDMFT at large 
volumes and low temperatures. With decreasing volume, however, the DMFT energies 
bend away from the polarized HF solutions. Thus, at T = 0.054 eV = 600 K, a region of 
negative curvature in EDMFT - EPMHF is evident within the observed two phase region 

Fig. 14b presents the calculated LDA+DMFT total energy Etot(T) = ELDA(T) + 
EDMFT (T)-Em~~~(T) where  ern^^^ is the energy of an LDA-like solution of the Hamil- 
tonian (13).8* Since both ELDA and EPMW  em^^^ have positive curvature through- 
out the volume range considered, it is the negative curvature of the correlation energy in 
Fig. 14a which leads to the dramatic depression of the LDA+DMFI' total energies in the 
range V = 26-28 A3 for decreasing temperature, which contrasts to the smaller changes 
near V= 34 A3 in Fig. 14b. This trend is consistent with a double well structure emerging 
at still lower temperatures (prohibitively expensive for QMC simulations), and with it a 
first-order volume collapse. This is in reasonable agreement with the experimental volume 
collapse given our use of energies rather than free energies, the different temperatures, and 
the LDA and Dh4FT approximations. A similar scenario has been proposed recently for 
the & a  transition in Pu on the basis of LDA+DMFT calculationsY4 which solves DMFT 
by an ansatz inspired by IPT and includes a modification of the DFTLDA step to account 
for the density changes introduced by the DMFT.49 

In a separate LDA+DMET(NCA) calculation for Ce, we have obtained a number of 
physical quantities for both phases which may be compared to experimental values.m Var- 
ious static properties extracted from the calculationsM and their counterparts from experi- 
ments are collected in Table 1 and show an overall fair to good agreement in the tendencies 
and, except for the susceptibility, the absolute values. Since the calculation of the magnetic 
susceptibility x in Ref. 50 was based on simplifying assumptions, the absolute numbers 
cannot be expected to match experiment. However, the general tendency and especially 
the ratio between a- and 7-Ce is in good agreement with experiment. It is interesting to 
note that the experiments predict a finite Kondo screening-scale for both phases, which ac- 
tually would point toward the KVC scenario. Finally, let us compare spectral functions for 
the 4f-states calculated with the LDA+DMFT(NCA) approach to experimental data?' The 
photoemission spectrum for a-Ce (upper part of Fig. 15) shows a main structure between 

(arrows). 
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Figure 14. (a) Correlation energy EDMFT - EPMHF as a function of atomic volume (symbols) and polarized 
HF energy EAFHF - EPMHF (dotted lines which, at large V, approach the DMFT curves for the respective 
temperatures); arrows: observed volume collapse from the a- to the 7-phase. The correlation energy sharply 
bends away from the polarized HF energy in the region of the transition. (b) The resultant negative curvature 
leads to a growing depression of the total energy near V = 26-28 A3 as temperature is decreased, consistent with 
an emerging double well at still lower temperatures and thus the a-7 transition. The curves at T = 0.544 eV 
were shifted downwards in (b) by -0.5 eV to match the energy range [reproduced from Ref. 511. 

-. - - 
~.[lO-~emv/moZ] I 1.08 I 0 . 5 3 . .  .0.70 I 24 1 8.0 ... 12 

Table 1. Comparison between LDA+DMm(NCA) calculated parameters for both a- and 7-phase at T = 580 K 
and experimental v a l ~ e s * ~ ~ ~  [reproduced from Ref. 501. Pi. PI and P2 are partial probabilities for an empty, 
singly and doubly occupied 4f-state, nf is the f-electron occupancy, TK the estimated Kondo temperature, and 
x the magnetic susceptibility. 

. -  
3 eV and 7 eV, which is attributed to 4f2 final state multiplets. In the calculated spectrum 
all excitations to 4f2 states are described by the featureless upper Hubbard band. As a 
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Figure 15. Comparison between combined photoemission91 and BIS9' experimental (circles) and theoretical 
(solid h e )  f-spectra for a- (upper paxt) and 7-Ce (lower paxt) at T = 580 K. The relative intensities of the 
BIS and photccmission portions are roughly for one 4f electron. The experimental and theoretical spectra were 
normaliztd and the theoretical curve was broadened with resolution width of 0.4 eV. In the insets a comparison 
Lutween RI€'ES93 experimental (circles) and theoretical (solid line) f-spectra is given. The experimental and 
theoretical data were normalizbd and the theoretical curve was broadened with broadening coefficient of 0.1 CV 
[reproduced from Ref. SO]. 

consequence of the simplified interaction model all doubly occupied states are degenerate. 
This shortcoming in our calculation is responsible for the sharply peaked main structure. 
The neglected exchange interaction would produce a multiplet structure, which would be 
closer to the experiment. The experimental peak at about 0.5 eV is attributed to two 4f1 
final states, which are split by spin-orbit coupling. The calculated f-spectrum shows a 
sharp quasiparticle or Kondo resonance slightly above the Fermi energy, which is the re- 
sult of the formation of a singlet state between f -  and conduction states. We thus suggest 
that the spectral weight seen in the experiment is a result of this quasiparticle resonance. 
Since we did not yet include spin-orbit coupling in our model, we cannot observe the men- 
tioned splitting of the resonance. However, as it is well known,% the introduction of such a 
splitting would eventually split the Kondo resonance. If we used the experimentally deter- 
mined value of about 0.3 eV for the spin-orbit splitting,92 the observed resonance of width 
0.5 eV would indeed occur in the calculations. In the lower part of Fig. 15, a comparison 
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between experiment and our calculation for y-Ce is shown. The most striking difference 
between lower and upper part of Fig. 15 is the absence of the Kondo resonance in the high 
temperature phase (y-Ce; transition temperature 141 K81) which is in agreement with our 
calculations. 

In the insets of Fig. 15, our results for the non-occupied states in the f-density are 
compared with RIPES data.93 The calculated f-spectra were multiplied by the Fermi-step 
function and broadened with an Lorentzian of the width 0.1 eV in order to mimic the exper- 
imental resolution in the theoretical curves. Here, as above the theoretical overestimation 
of the sharpness of the upper Hubbard band is a consequence of the simplified local inter- 
action and thus of the missing multiplet structure of the 4f2-final states. The main feature 
of the experimental spectra, i.e., a strong decrease of the intensity ratio for Kondo reso- 
nance and upper Hubbard band peaks from a- to -y-Ce, can also be seen in the theoretical 
curves of Fig. 15 as well as in the study presented in Fig. 13. A more thorough comparison 
of these two independent LDA+DMFT(NCA) and LDA+DMFT(QMC) studies remains to 
be done. 

6 Conclusion and Outlook 

In this paper we discussed the set-up of the computational scheme LDA+DMFT which 
merges two non-perturbative, complementary investigation techniques for many-particle 
systems in solid state physics. LDA+DMFT allows one to perform ab initio calculations 
of real materials with strongly correlated electrons. Using the band structure results cal- 
culated within local density approximation (LDA) as input, the missing electronic corre- 
lations are introduced by dynamical mean-field theory (DMFT). On a technical level this 
requires the solution of an effective self-consistent, multi-band Anderson impurity prob- 
lem by some numerical method (e.g. IPT, NCA, QMC). Comparison of the photoemission 
spectrum of Lal-,Sr,TiOs calculated by LDA-kDMFT using IPT, NCA, and QMC re- 
veal that the choice of the evaluation method is of considerable importance. Indeed, only 
with the numerically exact QMC quantitatively reliable results are obtained. The results 
of the LDA+DMFT(QMC) approach were found to be in very good agreement with the 
experimental photoemission spectrum of Lao.&o.o,jTiO3. 

We also presented results of a LDA+DMFT(QMC) studyu of the Mott-Hubbard metal- 
insulator transition (MIT) in the paramagnetic phase of (doped) V203.  These results 
showed a Mott-Hubbard MIT at a reasonable value of the Coulomb interaction U M 5eV 
and are in very good agreement with the experimentally determined photoemission and 
X-ray absorption spectra for this system, Le., above and below the Fermi energy. In 
particular, we find a spin state S = 1 in the paramagnetic phase, and an orbital admix- 
ture of efef and e:alg configurations, which both agree with recent experiments. Thus, 
LDA+DMFT(QMC) provides a remarkably accurate microscopic theory of the strongly 
correlated electrons in the paramagnetic metallic phase of VZO3. 

Another material where electronic correlations are considered to be important is 
Cerium. We reviewed our recent investigations of the Ce a-y transition, based on 
LDA+DMFT(QMC)’l and LDA+DMFT(NCA)” calculations. The spectral results and 
susceptibilities show the same tendency as seen in the experiment, namely a dramatic re- 
duction in the size of the quasiparticle peak at the Fermi level when passing from the a- 
to the y-phase. While we do not know at the moment whether the zero-temperature quasi- 

- \  
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particle peak will completely disappear at an even larger volume (i.e., in a rather Mott-like 
fashion) or simply fade away continuously with increasing volume (i.e., in a more Kondo- 
like fashion), an important aspect of our results is that the rapid reduction in the size of 
the peak seems to coincide with the appearance of a negative curvature in the correlation 
energy and a shallow minimum in the total energy. This suggest that the electronic corre- 
lations responsible for the reduction of the quasiparticle peak are associated with energetic 
changes that are strong enough to cause a volume collapse in the sense of the Kondo vol- 
ume collapse model,85 or a Mott transition modelw including electronic correlations. 

At present LDA+DMFT is the only available ab initio computational technique which 
is able to treat correlated electronic systems close to a Mott-Hubbard MIT, heavy fermions, 
and f-electron materials. The physical properties of such systems are characterized by the 
correlation-induced generation of small, Kondo-like energy scales which require the ap- 
plication of genuine many-body techniques. The appearance of Kondo-like energy scales 
in strongly correlated systems leads to several experimentally relevant consequences. One 
of the most important features is the enhancement of the quasiparticle mass m* (i.e., the 
decrease of the quasiparticle residue Z). This phenomenon can be observed as an enhance- 
ment of the coefficient y in the specific heat. Another important characteristic is the Wil- 
son ratio between y and the Pauli spin susceptibility x. Future LDA+DMFT investigations 
will determine these quantities for real systems, as well as the optical conductivity, phase- 
diagrams, the local vertex function, and various susceptibilities. 

LDA+DMFT provides, at last, a powerful tool for ab initio investigations of real mate- 
rials with strong electronic correlations. Indeed, LDA+DMFT depends on the input from 
both band structure theory and many-body approaches. Hence, for this computational 
scheme to be entirely successful in the future two strong and vital communities will finally 
have to join forces. 
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